375 research outputs found

    Effects of Nonperturbative Improvement in Quenched Hadron Spectroscopy

    Full text link
    We discuss a comparative analysis of unimproved and nonperturbatively improved quenched hadron spectroscopy, on a set of 104 gauge configurations, at beta=6.2. We also present here our results for meson decay constants, including the constants f_D and f_Ds in the charm-quark region.Comment: LATTICE98(spectrum

    SU(2) lattice gluon propagators at finite temperatures in the deep infrared region and Gribov copy effects

    Full text link
    We study numerically the SU(2) Landau gauge transverse and longitudinal gluon propagators at non-zero temperatures T both in confinement and deconfinement phases. The special attention is paid to the Gribov copy effects in the IR-region. Applying powerful gauge fixing algorithm we find that the Gribov copy effects for the transverse propagator D_T(p) are very strong in the infrared, while the longitudinal propagator D_L(p) shows very weak (if any) Gribov copy dependence. The value D_T(0) tends to decrease with growing lattice size; however, D_T(0) is non-zero in the infinite volume limit, in disagreement with the suggestion made in [1]. We show that in the infrared region D_T(p) is not consistent with the pole-type formula not only in the deconfinement phase but also for T < T_c. We introduce new definition of the magnetic infrared mass scale ('magnetic screening mass') m_M. The electric mass m_E has been determined from the momentum space longitudinal gluon propagator. We study also the (finite) volume and temperature dependence of the propagators as well as discretization errors.Comment: 11 pages, 14 figures, 3 tables. Few minor change

    The Minimal Landau Background Gauge on the Lattice

    Get PDF
    We present the first numerical implementation of the minimal Landau background gauge for Yang-Mills theory on the lattice. Our approach is a simple generalization of the usual minimal Landau gauge and is formulated for general SU(N) gauge group. We also report on preliminary tests of the method in the four-dimensional SU(2) case, using different background fields. Our tests show that the convergence of the numerical minimization process is comparable to the case of a null background. The uniqueness of the minimizing functional employed is briefly discussed.Comment: 5 pages, 1 tabl

    Infrared-suppressed gluon propagator in 4d Yang-Mills theory in a Landau-like gauge

    Get PDF
    The infrared behavior of the gluon propagator is directly related to confinement in QCD. Indeed, the Gribov-Zwanziger scenario of confinement predicts an infrared vanishing (transverse) gluon propagator in Landau-like gauges, implying violation of reflection positivity and gluon confinement. Finite-volume effects make it very difficult to observe (in the minimal Landau gauge) an infrared suppressed gluon propagator in lattice simulations of the four-dimensional case. Here we report results for the SU(2) gluon propagator in a gauge that interpolates between the minimal Landau gauge (for gauge parameter lambda equal to 1) and the minimal Coulomb gauge (corresponding to lambda = 0). For small values of lambda we find that the spatially-transverse gluon propagator D^tr(0,|\vec p|), considered as a function of the spatial momenta |\vec p|, is clearly infrared suppressed. This result is in agreement with the Gribov-Zwanziger scenario and with previous numerical results in the minimal Coulomb gauge. We also discuss the nature of the limit lambda -> 0 (complete Coulomb gauge) and its relation to the standard Coulomb gauge (lambda = 0). Our findings are corroborated by similar results in the three-dimensional case, where the infrared suppression is observed for all considered values of lambda.Comment: 5 pages, 2 figures, one figure with additional results and extended discussion of some aspects of the results added and some minor clarifications. In v3: Various small changes and addition

    Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

    Get PDF
    We present numerical results in SU(2) lattice gauge theory for the space-space and time-time components of the gluon propagator at equal time in the minimal Coulomb gauge. It is found that the equal-time would-be physical 3-dimensionally transverse gluon propagator Dtr(k)D^{tr}(\vec{k}) vanishes at k=0\vec{k} = 0 when extrapolated to infinite lattice volume, whereas the instantaneous color-Coulomb potential D44(k)D_{44}(\vec{k}) is strongly enhanced at k=0\vec{k} = 0. This has a natural interpretation in a confinement scenario in which the would-be physical gluons leave the physical spectrum while the long-range Coulomb force confines color. Gribov's formula Dtr(k)=(k/2)[(k2)2+M4]1/2D^{tr}(\vec{k}) = (|\vec{k}|/2)[(\vec{k}^2)^2 + M^4]^{1/2} provides an excellent fit to our data for the 3-dimensionally transverse equal-time gluon propagator Dtr(k)D^{tr}(\vec{k}) for relevant values of k\vec{k}.Comment: 23 pages, 12 figures, TeX file. Minor modifications, incorporating referee's suggestion

    Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    Full text link
    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex \widetilde{Z}_1(p^2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings beta = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16.Comment: 3 pages, 1 figure, presented by A. Mihara at the IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics Workshops, Angra dos Reis, Rio de Janeiro, Brazil (March 28--April 3, 2004

    Modeling the Gluon Propagator in Landau Gauge: Lattice Estimates of Pole Masses and Dimension-Two Condensates

    Get PDF
    We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p^2), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the Refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p^2) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a non-integer power of the momentum p in the numerator of the expression for D(p^2). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.Comment: 21 pages, 5 postscript figure

    The No-Pole Condition in Landau gauge: Properties of the Gribov Ghost Form-Factor and a Constraint on the 2d Gluon Propagator

    Get PDF
    We study the Landau-gauge Gribov ghost form-factor sigma(p^2) for SU(N) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d=3,4 w.r.t. d=2. In particular, considering any (sufficiently regular) gluon propagator D(p^2) and the one-loop-corrected ghost propagator G(p^2), we prove in the 2d case that sigma(p^2) blows up in the infrared limit p -> 0 as -D(0)\ln(p^2). Thus, for d=2, the no-pole condition \sigma(p^2) 0) can be satisfied only if D(0) = 0. On the contrary, in d=3 and 4, sigma(p^2) is finite also if D(0) > 0. The same results are obtained by evaluating G(p^2) explicitly at one loop, using fitting forms for D(p^2) that describe well the numerical data of D(p^2) in d=2,3,4 in the SU(2) case. These evaluations also show that, if one considers the coupling constant g^2 as a free parameter, G(p^2) admits a one-parameter family of behaviors (labelled by g^2), in agreement with Boucaud et al. In this case the condition sigma(0) <= 1 implies g^2 <= g^2_c, where g^2_c is a 'critical' value. Moreover, a free-like G(p^2) in the infrared limit is obtained for any value of g^2 < g^2_c, while for g^2 = g^2_c one finds an infrared-enhanced G(p^2). Finally, we analyze the Dyson-Schwinger equation (DSE) for sigma(p^2) and show that, for infrared-finite ghost-gluon vertices, one can bound sigma(p^2). Using these bounds we find again that only in the d=2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d=2 result is also supported by an analysis of the DSE using a spectral representation for G(p^2). Thus, if the no-pole condition is imposed, solving the d=2 DSE cannot lead to a massive behavior for D(p^2). These results apply to any Gribov copy inside the so-called first Gribov horizon, i.e. the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.Comment: 40 pages, 2 .eps figure

    SU(2) Landau gluon propagator on a 140^3 lattice

    Full text link
    We present a numerical study of the gluon propagator in lattice Landau gauge for three-dimensional pure-SU(2) lattice gauge theory at couplings beta = 4.2, 5.0, 6.0 and for lattice volumes V = 40^3, 80^3, 140^3. In the limit of large V we observe a decreasing gluon propagator for momenta smaller than p_{dec} = 350^{+ 100}_{- 50} MeV. Data are well fitted by Gribov-like formulae and seem to indicate an infra-red critical exponent kappa slightly above 0.6, in agreement with recent analytic results.Comment: 5 pages with 2 figures and 3 tables; added a paragraph on discretization effect

    Some exact properties of the gluon propagator

    Full text link
    Recent numerical studies of the gluon propagator in the minimal Landau and Coulomb gauges in space-time dimension 2, 3, and 4 pose a challenge to the Gribov confinement scenario. We prove, without approximation, that for these gauges, the continuum gluon propagator D(k)D(k) in SU(N) gauge theory satisfies the bound d1d1(2π)dddkD(k)k2N{d-1 \over d} {1 \over (2 \pi)^d} \int d^dk {D(k) \over k^2} \leq N. This holds for Landau gauge, in which case dd is the dimension of space-time, and for Coulomb gauge, in which case dd is the dimension of ordinary space and D(k)D(k) is the instantaneous spatial gluon propagator. This bound implies that limk0kd2D(k)=0\lim_{k \to 0}k^{d-2} D(k) = 0, where D(k)D(k) is the gluon propagator at momentum kk, and consequently D(0)=0D(0) = 0 in Landau gauge in space-time d=2d = 2, and in Coulomb gauge in space dimension d=2d = 2, but D(0) may be finite in higher dimension. These results are compatible with numerical studies of the Landau-and Coulomb-gauge propagator. In 4-dimensional space-time a regularization is required, and we also prove an analogous bound on the lattice gluon propagator, 1d(2π)dππddkμcos2(kμ/2)Dμμ(k)4λsin2(kλ/2)N{1 \over d (2 \pi)^d} \int_{- \pi}^{\pi} d^dk {\sum_\mu \cos^2(k_\mu/2) D_{\mu \mu}(k) \over 4 \sum_\lambda \sin^2(k_\lambda/2)} \leq N. Here we have taken the infinite-volume limit of lattice gauge theory at fixed lattice spacing, and the lattice momentum componant kμk_\mu is a continuous angle πkμπ- \pi \leq k_\mu \leq \pi. Unexpectedly, this implies a bound on the {\it high-momentum} behavior of the continuum propagator in minimum Landau and Coulomb gauge in 4 space-time dimensions which, moreover, is compatible with the perturbative renormalization group when the theory is asymptotically free.Comment: 13 page
    corecore